INTRODUCTION

• Pigs' drinking water needs are farm and management specific, and wide ranges for every production phase and age have been described in literature

• The objective of this study was to use new technologies to monitor and predict daily water consumption of fattening pigs with higher accuracy.

MATERIALS AND METHODS

• Real-time sensor system installed in two fattening buildings (ca. 1000 animals each)

• 60 days of life at the entrance

• Pens of 10 pigs, with a stock density of 0.70 m²/pig

• Four batches of pigs followed-up

RESULTS

Age vs Intake $R^2=0.72$

<table>
<thead>
<tr>
<th>Avg. Water consumption range (L/animal/day)</th>
<th>Average difference to literature values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower (60 days of age)</td>
<td>1.73</td>
</tr>
<tr>
<td></td>
<td>22.4%</td>
</tr>
<tr>
<td>Higher (150 days of age)</td>
<td>4.65</td>
</tr>
<tr>
<td></td>
<td>48.9%</td>
</tr>
</tbody>
</table>

Table 1. Average consumption ranges and difference to theoretical values

![Figure 2. Sensor system operation layout](image)

![Figure 1. Example of daily water consumption trend.](image)

![Figure 3. Linear regression of water consumption versus age of fattening pigs.](image)

Predictive equation for water consumption at this site: $*Y = 0.0324x - 0.2081$

*. Y = individual daily water intake (L/animal/day)

X = age (days)

CONCLUSION

Information and communication technologies allow real time control of water consumption of GF pigs, defining more accurately the reference levels and patterns. This leads to huge possibilities about predicting disease and adjust water medication properly.